

Sqlalchemy Seeder

Seed SQLAlchemy database with a simple data format. Supports references to other entities (and their fields) that are
defined alongside it or persisted in the database.

You can install the library from PyPI:

pip install sqlalchemy-seeder

Table of contents

	Seeders
	Basic seeder

	Resolving seeder
	Data format

	Format examples

	Using the resolving seeder

	API Reference
	Basic seeder

	Resolving seeder

	Exceptions

Contribute / Issues

This project is hosted on GitHub at https://github.com/RiceKab/sqlalchemy-seeder.

License

MIT License

Indices and tables

	Index

	Module Index

	Search Page

Seeders

Basic seeder

If you only need to create an object using a simple field->value mapping you can do so with the
BasicSeeder methods.

Resolving seeder

Once you want to be able to reference other entities you’ll need to use a ResolvingSeeder.
This allows for entity attributes to point to other entities (in case of relationships) or reference another entity’s field
(for foreign keys or attributes).

This requires the seed file to be formatted in a specific way which we will detail in the next section.

Data format

Currently supported formats:

	JSON

	YAML

The top structure is composed out of one or more entity group objects which define a target class and a data block.
The data block in turn contains one or more entity data blocks which then contains field-value pairs alongside
the special !refs key where references are defined.

The general structure is outlined here (using JSON), for some complete examples Format examples.

	Entity Group

Either a list of entity groups or a single entity group should form the root node of your data.

For the target class you can provide a class name (eg. MyClass) or a path to the class (eg. path.to.module:MyClass)

A single entity group:

{
 "target_class": "MyClass",
 "data": {}
}

A list of entity groups:

[{
 "target_class": "MyClass",
 "data": {}
},{
 "target_class": "my.module.OtherClass",
 "data": []
}]

	Entity Data

An entity data node defines a single entity. The !refs field is an optional key where you can define field values as
references to other entities. These reference definitions are outlined in the next section.

A simple data block, without references, would simple be like this:

{
 "my_field": "my_value",
 "my_number": 123
}

An example with references:

{
 "my_field": "my_value",
 "my_number": 123,
 "!refs": {
 "my_other_class": {}
 }
}

In this example, the resolved reference is assigned to the attribute my_other_class of the defined entity.

	Reference Description

	The reference description defines which entity is being referenced based on some provided criteria and a target class.

	Optionally, a field can be provided which corresponds to a referenced attribute of the matched entity.
If no field is defined the entire object is used as a reference (eg. for relationships).

{
 "target_class": "OtherClass",
 "criteria": {
 "name": "My Name"
 }
}

Specifying a specific field:

{
 "target_class": "my.module.OtherClass",
 "criteria": {
 "length": 4,
 "width": 6
 },
 "field": "name"
}

Format examples

Examples will be built up using JSON, the final example in each section will include a YAML version.
The examples use the following model classes (in a module called “example.model”):

In module example.model
class Country(Base):
 __tablename__ = 'country'

 id = Column(Integer, primary_key=True)
 short = Column(String(5))
 name = Column(String(100))

 airports = relationship("Airport", back_populates="country")

class Airport(Base):
 __tablename__ = 'airport'

 id = Column(Integer, primary_key=True)
 icao = Column(String(4))
 name = Column(String(100))
 altitude = Column(Integer)

 country_id = Column(Integer, ForeignKey("country.id"), nullable=False)
 country = relationship("Country", back_populates="airports")

Basic examples

Let’s start with defining just a single country:

{
 "target_class": "Country",
 "data": {
 "name": "United Kingdom",
 "short": "UK"
 }
}

Defining multiple countries is fairly trivial as well:

{
 "target_class": "example.module:Country",
 "data": [
 {
 "name": "United Kingdom",
 "short": "UK"
 }, {
 "name": "Belgium",
 "short": "BE"
 }
]
}

You could define them separately if preferred:

[
 {
 "target_class": "Country",
 "data":
 {
 "name": "United Kingdom",
 "short": "UK"
 }

 },
 {
 "target_class": "Country",
 "data": {
 "name": "Belgium",
 "short": "BE"
 }
 }
]

In yaml these would be:

--- # Compact
target_class: example.module:Country
data:
- name: United Kingdom
 short: UK
- name: Belgium
 short: BE

--- # Separate
- target_class: Country
 data:
 name: United Kingdom
 short: UK
- target_class: Country
 data:
 name: Belgium
 short: BE

Referencing other entities

	When referencing other entities you specify a number of criteria to find the matching entity. This can use any of the

	fields that are defined in the referenced entity class.

If there is more than one match, or no matches are found an error will be thrown.

From our example model, Airport`s require a reference to a country, either through the `country_id foreign key or via
the country relationship. Here are several ways to fulfil this requirement by reference:

{
 "target_class": "Airport",
 "data": {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country_id": {
 "target_class": "Country",
 "criteria": {
 "short": "UK"
 },
 "field": "id"
 }
 }
 }
}

You can also do it via the relationship:

{
 "target_class": "Airport",
 "data": {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country": {
 "target_class": "Country",
 "criteria": {
 "short": "UK"
 }
 }
 }
 }
}

You can also reference entities that are inserted from the same file. Here the country relationship in the Airport entity is
populated with the object that is created from this schema.

[
 {
 "target_class": "Country",
 "data":
 {
 "name": "United Kingdom",
 "short": "UK"
 }
 },
 {
 "target_class": "Airport",
 "data": {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country": {
 "target_class": "Country",
 "criteria": {
 "short": "UK"
 }
 }
 }
 }
 }
]

This same example in yaml:

- target_class: Country
 data:
 name: United Kingdom
 short: UK
- target_class: Airport,
 data:
 icao: EGLL
 name: London Heathrow
 '!refs': # <-- Due to the '!' symbol it has to be surrounded in quotes.
 country:
 target_class: Country,
 criteria:
 short: UK

Comprehensive example

Three countries each with a single airport.

[
 {
 "target_class": "example.module:Country",
 "data": [
 {
 "name": "United Kingdom",
 "short": "UK"
 },
 {
 "name": "Belgium",
 "short": "BE"
 },
 {
 "name": "Netherlands",
 "short": "NL"
 }
]
 },
 {
 "target_class": "example.module:Airport",
 "data": [
 {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country": {
 "target_class": "Country,",
 "criteria": {
 "short": "UK"
 }
 }
 }
 },
 {
 "icao": "EBBR",
 "name": "Brussels Zaventem",
 "!refs": {
 "country_id": {
 "target_class": "Country,",
 "criteria": {
 "short": "BE"
 },
 "field": "id"
 }
 }
 },
 {
 "icao": "EHAM",
 "name": "Amsterdam Schiphol",
 "!refs": {
 "country": {
 "target_class": "Country,",
 "criteria": {
 "name": "Netherlands"
 }
 }
 }
 }
]
 }
]

- target_class: example.module:Country
 data:
 - name: United Kingdom
 short: UK
 - name: Belgium
 short: BE
 - name: Netherlands
 short: NL
- target_class: example.module:Airport
 data:
 - icao: EGLL
 name: London Heathrow
 '!refs':
 country:
 target_class: Country,
 criteria:
 short: UK
 - icao: EBBR
 name: Brussels Zaventem
 '!refs':
 country_id:
 target_class: Country,
 criteria:
 short: BE
 field: id
 - icao: EHAM
 name: Amsterdam Schiphol
 '!refs':
 country:
 target_class: Country,
 criteria:
 name: Netherlands

Using the resolving seeder

A ResolvingSeeder needs access to a session (provided on initialization) which it uses to resolve references.

A basic usage example:

from sqlalchemyseeder import ResolvingSeeder
from db import Session # Or wherever you would get your session

session = Session()
seeder = ResolvingSeeder(session)
See API reference for more options
new_entities = seeder.load_entities_from_yaml_file("path/to/file.yaml")
session.commit()

API Reference

Basic seeder

	
class sqlalchemyseeder.basic_seeder.BasicSeeder

	Directly converts objects from dictionary without any further processing.

	
static entity_from_dict(entity_dict, entity_class)

	Created an entity using the dictionary as initializer arguments.

	
static entity_from_json_string(json_string, entity_class)

	Extract entity from given json string.

	
static entity_from_yaml_string(yaml_string, entity_class)

	Extract entity from given yaml string.

Resolving seeder

	
class sqlalchemyseeder.resolving_seeder.ResolvingSeeder(session)

	Seeder that can resolve entities with references to other entities.

This requires the data to be formatted in a custom Data format to define the references.

As entities have to define their target class they must be registered so the sqlalchemyseeder can retrieve them during the
seeding process. This is typically done using register(),
register_class() or
register_module() which are
hoisted methods from ClassRegistry. If a classpath is encountered but not
recognized it will be resolved before continuing.

The session passed to this sqlalchemyseeder is used to resolve references. Flushes may occur depending on the session
configuration and the passed parameters. The default behaviour when loading entities is to perform flushes but not
to commit.

	
load_entities_from_data_dict(seed_data, separate_by_class=False, flush_on_create=True, commit=False)

	Create entities from the given dictionary.

By default each entity is flushed into the provided session when it is created. This is useful if you want to
reference them by id in other entities.

If this behaviour is not wanted (eg. the created entities are incomplete) you can disable it by setting
flush_on_create to False when loading entities. The provided session can still flush if it is configured with
autoflush=True.

No commit is issued unless commit is set to True.

	Parameters

	
	seed_data – The formatted entity dict or list. This collection can be modified by the resolver.

	separate_by_class – Whether the output should separate entities by class (in a dict).

	flush_on_create – Whether entities should be flushed once they are created.

	commit – Whether the session should be committed after entities are generated.

	Returns

	List of entities or a dictionary mapping of classes to a list of entities based on separate_by_class.

	Raises

	ValidationError – If the provided data does not conform to the expected data structure.

	
load_entities_from_json_file(seed_file, separate_by_class=False, flush_on_create=True, commit=False)

	Convenience method to read the given file and parse it as json.

See: load_entities_from_data_dict

	
load_entities_from_json_string(json_string, separate_by_class=False, flush_on_create=True, commit=False)

	Parse the given string as json.

See: load_entities_from_data_dict

	
load_entities_from_yaml_file(seed_file, separate_by_class=False, flush_on_create=True, commit=False)

	Convenience method to read the given file and parse it as yaml.

See: load_entities_from_data_dict

	
load_entities_from_yaml_string(yaml_string, separate_by_class=False, flush_on_create=True, commit=False)

	Parse the given string as yaml.

See: load_entities_from_data_dict

	
class sqlalchemyseeder.resolving_seeder.ClassRegistry

	A cache of mappable classes used by ResolvingSeeder.

	
get_class_for_string(target)

	Look for class in the cache. If it cannot be found and a full classpath is provided, it is first registered
before returning.

	Parameters

	target – The class name or full classpath.

	Returns

	The class defined by the target.

	Raises

	AttributeError – If there is no registered class for the given target.

	
register(target)

	Register module or class defined by target.

	Parameters

	target – If target is a class, it is registered directly using register_class.

If target is a module, it registers all mappable classes using register_module.

If target is a string, it is first resolved into either a module or a class. Which look like:

Module path: “path.to.module”

Class path: “path.to.module:MyClass”

	Raises

	
	ValueError – If target string could not be parsed.

	AttributeError – If target string references a class that does not exist.

	
register_class(cls)

	Registers the given class with its full class path in the cache.

	Parameters

	cls – The class to register.

	Returns

	The class that was passed.

	Raises

	ValueError – If the class is not mappable (no associated SQLAlchemy mapper).

	
register_module(module_)

	Retrieves all classes from the given module that are mappable.

	Parameters

	module – The module to inspect.

	Returns

	A set of all mappable classes that were found.

Exceptions

	
exception sqlalchemyseeder.exceptions.AmbiguousReferenceError

	Raised when a reference matches more than one entity.

	
exception sqlalchemyseeder.exceptions.EntityBuildError

	Internal error to signify that an entity cannot be built.

	
exception sqlalchemyseeder.exceptions.UnresolvedReferencesError

	Raised when a reference could not be resolved during the seeding process.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sqlalchemyseeder	

 	
 	
 sqlalchemyseeder.exceptions	

Index

 A
 | B
 | C
 | E
 | G
 | L
 | R
 | S
 | U

A

 	
 	AmbiguousReferenceError

B

 	
 	BasicSeeder (class in sqlalchemyseeder.basic_seeder)

C

 	
 	ClassRegistry (class in sqlalchemyseeder.resolving_seeder)

E

 	
 	entity_from_dict() (sqlalchemyseeder.basic_seeder.BasicSeeder static method)

 	entity_from_json_string() (sqlalchemyseeder.basic_seeder.BasicSeeder static method)

 	
 	entity_from_yaml_string() (sqlalchemyseeder.basic_seeder.BasicSeeder static method)

 	EntityBuildError

G

 	
 	get_class_for_string() (sqlalchemyseeder.resolving_seeder.ClassRegistry method)

L

 	
 	load_entities_from_data_dict() (sqlalchemyseeder.resolving_seeder.ResolvingSeeder method)

 	load_entities_from_json_file() (sqlalchemyseeder.resolving_seeder.ResolvingSeeder method)

 	
 	load_entities_from_json_string() (sqlalchemyseeder.resolving_seeder.ResolvingSeeder method)

 	load_entities_from_yaml_file() (sqlalchemyseeder.resolving_seeder.ResolvingSeeder method)

 	load_entities_from_yaml_string() (sqlalchemyseeder.resolving_seeder.ResolvingSeeder method)

R

 	
 	register() (sqlalchemyseeder.resolving_seeder.ClassRegistry method)

 	register_class() (sqlalchemyseeder.resolving_seeder.ClassRegistry method)

 	
 	register_module() (sqlalchemyseeder.resolving_seeder.ClassRegistry method)

 	ResolvingSeeder (class in sqlalchemyseeder.resolving_seeder)

S

 	
 	sqlalchemyseeder.exceptions (module)

U

 	
 	UnresolvedReferencesError

 nav.xhtml

 Table of Contents

 		
 Sqlalchemy Seeder

 		
 Seeders

 		
 Basic seeder

 		
 Resolving seeder

 		
 Data format

 		
 Format examples

 		
 Using the resolving seeder

 		
 API Reference

 		
 Basic seeder

 		
 Resolving seeder

 		
 Exceptions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

