

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

sqlalchemy-seeder

Seed SQLAlchemy database with a simple data format. Supports references to other entities (and their fields)
that are defined alongside it or persisted in the database.

Requirements & Installation

Runs on Python 2.7 or Python 3

Dependencies

	sqlalchemy

	jsonschema

	pyyaml

Installation

pip install sqlalchemy-seeder

Usage

Currently there are 2 seeders available: BasicSeeder and ResolvingSeeder.

BasicSeeder only provides a simple static method for converting a dictionary / json string to an entity object.
It does not perform any logic to validate or resolve the values. Wrong values will cause a KeyError.

ResolvingSeeder allows you to define multiple entities in one file as well as define referential values.
This requires some formatting of the data so the seeder will know how to resolve them.

ResolvingSeeder requires a session to be provided that it uses to query the database to resolve references
(and flush/commit as requested).

Since it has to be made aware of classes they have to be registered to be found. If a class path is provided but not
recognized it will try to register the path before it continues.

Currently supported data formats

	JSON

	YAML

Data format structure

The top structure is composed out of one or more entity group objects which define a target class and a data block.
The data block in turn contains one or more entity data blocks which then contains simple key-value pairs alongside
the special !refs key where references are defined.

The general structure is outlined here (using JSON), for some complete examples see further below.

	Entity Group

Either a list of entity groups or a single entity group should form the root node of your json data.

For the target class you can provide a class name (eg. MyClass) or a path to the class (eg. path.to.module:MyClass)

{
 "target_class": <class_name> or <class_path>,
 "data": list of <entity_data> objects or a single <entity_data> object
}

	Entity Data

Defines a single entity. The !refs field is a special keyword that defines references to other entities.
It is optional.

{
 "my_field": "my_value",
 "my_number": 123,
 ...
 "!refs": {
 "my_reference_relation": <reference_description>,
 ...
 }
}

	Reference Description

The reference description defines which entity is being referenced based on some provided criteria. Optionally,
a field can be provided which will be the referenced attribute of the matched entity. If no field is defined
the entire object is used as a reference (for relationships).

{
 "target_class": <class_name> or <class_path>,
 "criteria": {
 "referenced_field": "required_value",
 ..
 },
 "field": <referenced_entity_field> <-- If missing or empty this reference uses the entity itself.
}

Examples

For the examples we are using these model classes (in a module called “example.model”):

In module example.model
class Country(Base):
 __tablename__ = 'country'

 id = Column(Integer, primary_key=True)
 short = Column(String(5))
 name = Column(String(100))

 airports = relationship("Airport", back_populates="country")

class Airport(Base):
 __tablename__ = 'airport'

 id = Column(Integer, primary_key=True)
 icao = Column(String(4))
 name = Column(String(100))
 altitude = Column(Integer)

 country_id = Column(Integer, ForeignKey("country.id"), nullable=False)
 country = relationship("Country", back_populates="airports")

	Basic example Single country

This is the simplest form of input.

{
 "target_class": "Country",
 "data": {
 "name": "United Kingdom",
 "short": "UK"
 }
}

	Multiple countries

You can define these together (more compact):

{
 "target_class": "example.module:Country", <-- Class path example
 "data": [
 {
 "name": "United Kingdom",
 "short": "UK"
 }, {
 "name": "Belgium",
 "short": "BE"
 }
]
}

Or separate if preferred:

[
 {
 "target_class": "Country",
 "data":
 {
 "name": "United Kingdom",
 "short": "UK"
 }

 },
 {
 "target_class": "Country",
 "data": {
 "name": "Belgium",
 "short": "BE"
 }
 }
]

	Referencing other entities

Here the defined airport specifies that the value of country_id references a country class’s id field
where its field short is "UK".
If there is more than one match, or no matches are found an error will be thrown.

{
 "target_class": "Airport",
 "data": {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country_id": {
 "target_class": "Country",
 "criteria": {
 "short": "UK"
 },
 "field": "id"
 }
 }
 }
}

You can also reference entities that are inserted from the same file. Here the country relationship in the Airport entity is
populated with the object that is created from this schema.

[
 {
 "target_class": "Country",
 "data":
 {
 "name": "United Kingdom",
 "short": "UK"
 }
 },
 {
 "target_class": "Airport",
 "data": {
 "icao": "EGLL",
 "name": "London Heathrow",
 "!refs": {
 "country": {
 "target_class": "Country",
 "criteria": {
 "short": "UK"
 }
 }
 }
 }
 }
]

This same example in yaml:

- target_class: Country
 data:
 name: United Kingdom
 short: UK
- target_class: Airport,
 data:
 icao: EGLL
 name: London Heathrow
 '!refs': <-- Due to '!' it has to be surrounded in quotes.
 country:
 target_class: Country,
 criteria:
 short: UK

Issues

Submit issues on Github Issues [https://github.com/RiceKab/sqlalchemy-jsonseeder/issues].

License

MIT License

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

